

ONE-STOP SERVICE • Harmonic diagnosis & consulting • Harmonics attenuation transformer • Harmonic filter • Earthquake-proof transformer • ESS

ENERTECH CO., LTD.

ADDRESS. (13215) #1506, 545, Dunchon-daero, Jungwon-gu, Seongnam-si, Gyeonggi-do, Republic of Korea

TEL. +82-31-717-8584 FAX. +82-31-734-7633 E-MAIL. energy@enerkeeper.com

5 power generation companies under KEPCO Joint R&D New product

INNOVATIVE ENERGY SOLUTION

CARBON NEUTRALITY & ESG MANAGEMENT PARTNERS

ONE-STOP SERVICE

Harmonic diagnosis & consulting

- Harmonics attenuation transformer
- Harmonic filter = ESS
- Earthquake-proof transformer

Carbon Neutrality & ESG Management Partners

Based on know-how accumulated for more than 20 years in the field of **harmonics and power quality,** Enertech Co., Ltd. provides **one-stop service** from harmonics diagnosis ► solution provision ► maintenance and A/S.

ONE-STOP SERVICE

CONTENTS

	P. 04	04. ESS	P. 26
02. EARTHQUAKE-PROOF TRANSFORMER	P. 16	05 HARMONIC DIAGNOSIS & CONSULTING	P. 30
03. HARMONIC FILTER	P. 22		P. 32

HYBRID TRANSFORMER

It is an all-in-one transformer with the function of killing three birds with one stone having transformer function & harmonics reduction & unbalance improvement function, while holding the industry's first green certification, contributing to carbon neutrality.

·Purpose	Distribution tr
Туре	Cast-resin / O
Efficiency	Standard cons
	(high efficienc
Insulation	Cast-resin (Typ

Patent & Certification

Expected Effects

Hybrid transformers reduce harmonic waves, power loss, and winding temperature, **reducing LCC(Life Cycle Cost) costs by 15~20%** compared to conventional transformers.

01. Improved power quality by reducing harmonics by 36-70%

02. The winding temperature is reduced by 8~13%, which extends the life of the transformer.

03. Up to 7.6% reduction in transformer losses

due to reduced stray load loss

* Total Loss = No Load Loss + Load Loss

04. Reducing carbon emissions 2,243kg per year

due to reduced power loss

** The data distributed by the NIFoS November 2013 applies "standard carbon absorption of major forest species"

Competitor Comparison

The hybrid transformer reduces investment costs by 30~35% and power loss by 5~7% compared to the installation method of ^rTransformer + Harmonic filter_J.

01. Installation Drawing

02. Investment Cost (Unit: million)

04. Annual Savings (Unit: million)

03. Maintenance Cost (Unit: million)

Hybrid

transformer

05. Payback Period (Unit: million)

* The investment cost and payback period may differ depending on the capacity and specifications of the transformer.

• Core Technology Comparison

The hybrid transformer **reduces harmonics and minimizes power loss** through the patented Zig-Zag Winding.

01. Harmonic wave attenuation by applying Zig-Zag Winding patented technology

02. Reduced stray load loss by optimizing the lead wire design

03. Reduced hot-spot temperature by enhancing the tie-plate structure

* KERI : The Korea Electrotechnology Research Institute

• Necessity

The proliferation of non-linear electrical loads like LEDs, inverters, UPS, and electric vehicle chargers has increased harmonic waves and electrical damage risks. A harmonic filters or Hybrid transformers are essential for safeguarding against these issues and optimizing efficiency.

🔎 Harmonic source

* Source : KEPCO ^rDistribution System Harmonic Management Standards_

Device	Types of circuits
DC subway substation, electrochemical, etc.	3 phase bridge
Alternating-current electric railway vehicle	Single phase bridge
General-purpose inverters, elevators, refrigeration and air conditioners, etc.	3 phase/Single phase bridge
UPS, Power supply for communication, distributed device for grid connection	3 phase/Single phase bridge (PWM control)
Reactive power compensator (SVC), lighting device, heater	rnating current power controller
Electric motors (for rolling, cement, AC railway vehicles)	Cyclone converter
For steelmaking	Alternating current arc furnace
etc. (LED, induction, Electric vehicle charging device)	-

$\stackrel{\label{eq:power}}{ ho}$ Power quality disruption factors

Harmonics are the main cause of deteriorating power quality and cause electrical accidents such as equipment failure, malfunction, and shortened lifespan. Therefore, measures to reduce harmonics are important to improve power quality.

Harmful Effects of Harmonics

Harmonics cause various forms of damage such as increased loss, heat, noise, and malfunction in the power system and various electrical facilities.

Effects on Transformers

01. Increased Eddy current loss ---- Increased iron loss

	$ \begin{array}{l} E_1 &= (W_i/W_i) \times 100 \ [\%] \\ W_i &= (K_1 \times E_a^m) + \{K_2 \times (K_f \times E_a)^2\} \end{array} $
Iron loss	W _i : Iron loss
	W _{i1} : Core loss during excitation of the fundamental wave voltage
increase	Ea : Average value of excitation voltage including harmonics
rato	m : Essence of Steinmetz (Around 1.6 to 2.5)
Iuc	 k_f : Excitation voltage waveform factor including harmonics kf >1, In case of fundamental wave only kf = 1
	$K_{\rm p}, K_{\rm 2}$: Integer

* Hysteresis loss and eddy current loss increase due to harmonic current

03. Capacity reduction **bb** 64% Output reduction

Three phase load

THDF = $\sqrt{\frac{P_{LL-R}(pu)}{P_{II}(pu)}} \times 100 [\%]$ $P_{LL-R}(pu) = 1 + P_{EC-R}(pu)$ $P_{LL}(pu) = 1 + (K-factor \times P_{EC-R}(pu))$ P_{EC-R} : Eddy current In case of K-factor 13 (Mold TR-Eddy Current Loss = 14%)

THDF =
$$\sqrt{\frac{1+0.14}{1+13 \times 0.14}} \times 100 = 64$$
 [%]

04. Winding temperature **Increase 39%**

temperature rise due to the fundamental wave current

	$\Delta \Theta_{0} = \Delta \Theta_{1} \times (I_{e} / I_{1})^{1.6}$
Fransformer	Ex.) In case of fundamental wave current 650A, ITHD 48% Since the equivalent current (IRMS) including harmonic current is 800A,
winding	the transformer temperature rise in this case is as follow $\Delta \Theta_0 = \Delta \Theta_1 \times (800/650)^{1.6} = \Delta \Theta_1 \times 1.394$
emperature rise	I_1 : fundamental current I_e : Equivalent current including harmonic current $\Delta \Theta_1$: Winding temperature rise due to fundamental current
	$\Delta \Theta_o~$: Temperature rise of oil-immersed transformer
The winding te	mperature increased by about 39% compared to the

* Source : Power Quality Technology Co., Ltd.

Mid · Long-term

Reduce motor and transformer life

materials and insulation materials

Acceleration of deterioration of dielectric

Impact on power system and electrical facilities

Immod	iatoly	Sho	rt tarm
- IIIIII Eu	ICLEIV	- 3110	

Resonance caused by voltage and current, power factor reduction

Unpredictable shutdown of the protection system

- Decrease in power generation
- · Neutral over current

- · Malfunction of precision control device Increased facility noise and vibration
- · Current and voltage distortion

- Overcurrent of cables, transformers, generators, power capacitors
 - · Induced disturbance of telephone and communication lines Overdesign (wires, transformers, power capacitors)
- Rising economic costs
- Transformer Wires and conductors **Rotating machine** Capacitor for power Overcurrent Circuit breaker · Other Power quality technology Overheating Overheating Overheating Abrupt stop Ampacity reduction Overheating, Corona outbreak Decrease in efficiency Over-resonance Inaccurate measurement Noise, Vibration increased noise Neutral over current Shortened device lifespan Overcurrent Non-integer harmonic Acceleration of life deterioration Capacity reduction Capacity reduction Tog uneven Overvoltage insulation generation Drop in power factor Insulation breakdown Insulation breakdown Vibrational torque explosion Malfunction Decreased fuse capacity Skin Effect Frequent part failure Signal, communication failure

• Harmonics Standards

To prevent against electrical damage caused by harmonics, ^rHarmonics standards_J are being enforced globally.

Horean Standards

Revision	n of building electrical equipment design standards
· Legislation:	Article 44 of the Construction Technology Promotion Act and Article 65 of the Enforcement Decree of the same Act
· Criteria :	Building electrical equipment design standards (KDS 31 60 10 : 2019)
· Review :	Public announcement
 Notification: 	October 11, 2019 (molit Notice No. 2019-549)
Field	Incoming transfer facility
Before mendmer	Transformers are selected in consideration of the place of use, economic feasibility, and electrical characteristics, but when installed inside a building, a transformer with more than standard consumption efficiency should be used.

MOLIT - Incoming transfer facility design criteria

KEPCO – Regulations on the use of electric facilities for transmission and distribution

KEPCO harmonic regulation

Regulation : Regulations on the use of electric facilities for transmission and distribution (July 01, 2019) and enforcement rules (December 16, 2019)

Content : Harmonics (THD) acceptance criteria and protection device installation

· Subject : Users of electric furnaces and electric railways (mandatory application)

International Standards

IEC 61000 Harmonic Standard

Table. Allowable current ampacity by equipment					
	Equipment Classification				
Harmonics (n)	Balanced 3-phase equipment, Tools, sound equipment, Household appliances (A)	Portable device, Arc welding machine (A)	Lighting equipment (A)	PC, Monitor, TV, , Refrigerator, Freezer (Under 600W) (A)	
Odd Harmonics					
3	2.30	3.45	30 X Power factor	2.30	
5	1.14	1.71	10	1.14	
7	0.77	1.155	7	0.77	
9	0.40	0.60	5	0.40	
11	0.33	0.495	3	0.33	
13	0.21	0.315	3	0.21	
15 ≤ n ≤ 39	0.15 × 15/n	0.225 × 15/n	3	0.15 × 1 5/n	
Even Harmonics					
2	1.08	1.62	2	-	
4	0.43	0.645	-	-	
6	0.30	0.45	-	-	
8< n <40	0.23 × 8/n	0.345 × 8/n	-	-	

IEEE Std. 519 Standard for Harmonic

Table 1—Voltage distortion limits				
Bus voltage I⁄ at PCC	Individual harmonic (%)	Total harmonic distortion THD (%)		
$V \le 1.0 \text{ kV}$	5.0	8.0		
1 kV < V≤69 kV	3.0	5.0		
69 kV <v≤161 kv<="" th=""><th>1.5</th><th>2.5</th></v≤161>	1.5	2.5		
161 kV < V	1.0	1.5 ^a		

a High-voltage systems can have up to 2.0% THD where the cause is an HVDC terminal whose effects will have attenuated at points in the network where future users may be connected.

Table 2—Current distortion limits for systems rated 120 V through 69 kV

Maximum harmonic current distortion in percent of $I_{\rm L}$						
	Individual harmonic order (odd harmonics) ^{a,b}					
$I_{\rm SC}/I_{\rm L}$	3≤ <i>h</i> < 11	$11 \le h \le 17$	$17 \le h \le 23$	$23 \le h \le 35$	$35 \le h \le 50$	TDD
< 20°	4.0	2.0	1.5	0.6	0.3	5.0
20 < 50	7.0	3.5	2.5	1.0	0.5	8.0
50 < 100	10.0	4.5	4.0	1.5	0.7	12.0
100 < 1000	12.0	5.5	5.0	2.0	1.0	15.0
> 1000	15.0	7.0	6.0	2.5	1.4	20.0

a Even harmonics are limited to 25% of the odd harmonic limits above.

b Current distortions that result in a dc offset, e.g., half-wave converters, are not allowed.

 ${f c}\,$ All power generation equipment is limited to these values of current distortion, regardless of

actual $I_{\rm SC}/I_{\rm L}$

- where $I_{\rm sc}~$ = maximum short-circuit current at PCC
 - $I_{\rm L}~$ = maximiun demand load current (fundamental frequency component) at the PCC under normal load operating conditions

Design / Specification Application Examples

 \cdot The design application and specifications are simple, minimizing the engineer's working time.

 \cdot We offer technical seminars and design resources to approximately 30 metropolitan-area design firms.

-[™]/₄ Application case 01

☆ Application case 02

Installation Cases

$-\frac{1}{2}$ Korea Airports Corporation (Gimpo Airport)

	Harmonic Reduction 45.8% , Unbalance Improv. 98.3% , PF Improv. 4.2%			
	Before	After	Note	
	High-efficiency transformer + Active Filter (1,700 kVA)	Hybrid Transformer (1,700 kVA)	Measures to reduce harmonics, the existing active filter was replaced with a hybrid transformer.	
Harmonics (unit: %)	Unbalance (unit: %)	PF	unit: %)	
Before After	Before	After	Before After	
15.3 8.3	11.8	0.2	0.95 0.99	

🖞 Ulsan Airport

ITHD (unit: %)

Aviation

lights

General

power

Aviation lights : Harmonic Reduction 68.6%, Unbalance Improv. 24.5%, PF Improv. 2.4% General power : Harmonic Reduction 50.0%, Unbalance Improv. 67.7%, PF Improv. 2.9%

Before	After	Note
High-efficiency transformer	Hybrid Transforme	Replaced to reduce harmonics in aviation
(Aviation lights & General power)	(Aviation lights & General power)	lighting and general p

After 11.1 10.1 Unbalance (unit: %) Before Aviation lights Seneral power 35.6

PF (unit: %)

Before/After - Aviation lights

35.3

20.2

Before Installation High efficiency mold 150 kVA

Before/After - General power

After

4.0

11.5

Annual Visit Visit Stati Stati <t< th=""><th>NS POP POP</th><th>ATUS ITING ORDING ALYZING</th></t<>	NS POP POP	ATUS ITING ORDING ALYZING
300.00 30.00 30.00 10 11 11 11 11 11 11 11 11	VCLRR 399.00 U 1 order uwy Nor 30.00	T/CURR TAGE REENT
598.00 I 1 order VRT 509.00 309.34 A High 5.00 I I I I 5.00 I I I I I 5.00 I	CR I 1 ocdar VEC 0.500k 0.1505k ////////////////////////////////////	TOR PH ST
150. 0k 67. 71 kW 0.65	P 1 order 0.0333MW -0.R	, TAGE SENT

Before Installation High efficiency mold 600 kVA After Installation Hybrid Oil type 750 kVA

·☆ Korea Expressway Corporation (Tunnel LED)

Harmonic Reduction 49.1%, Unbalance Improv. 1.0%

Before	After	Note	
High-efficiency transformer	Hybrid Transformer	Measures to reduce harmonics	
(200 kVA)	(200 kVA)	in tunnel LED loads	

	High-efficiency transformer (Before)		Hybrid Transformer (After)			Reduction rate (%)			
Category	L	ED Dimmi	ng	LED Dimming			LED Dimming		
	15%	50%	100%	15%	50%	100%	15%	50%	100%
Voltage(V)	376	375	375	377	377	377	△0.3	△0.5	△0.5
Current(A)	62	105	166	51	89	156	▼17.7	▼15.2	▼6.0
Real Power(kW)	34	65	106	30	56	101	▼11.8	▼13.8	▼4.7
Apparent Power(kVA)	40	68	108	33	58	102	▼17.5	▼14.7	▼5.6
PF	0.85	0.95	0.98	0.90	0.97	0.99	△5.9	∆ 2.1	∆1.0
V_THD(%)	1.8	1.5	1.5	1.5	1.6	1.4	▼16.7	△6.7	▼6.7
I_THD(%)	17.1	8.3	5.7	13.9	7	3.1	▼18.7	▼15.7	▼45.6
I_TDD(%)	6.5	4.8	5.3	4	3.5	2.7	▼38.5	▼27.1	▼49.1

* Real-time power analysis according to LED dimming ratio (15, 50, 100%)

- ☆- OO Factory (Inverter Load)

1,500 kVA : Harmonic Reduction **47.1%**, Unbalance Improv. **39.4%**, PF Improv. **3.2% 1,000 kVA :** Harmonic Reduction **58.7%**, Unbalance Improv. **51.7%**, PF Improv. **10.8%**

Hybrid Oil type 1,000 kVA

Hybrid Oil type 1,000 kVA

Hybrid Oil type 1,000 kVA

Hybrid Oil type 1,500 kVA

Catagony		1,500 k\	/A		VA	
Category	Before	After	Rate of Change(%)	Before	After	Rate of Change(%)
V_THD(%)	1.4	1.1	▼ 21.4	1.3	1.1	▼ 15.4
I_THD(%)	5.1	2.7	▼ 47.1	13.8	5.7	▼ 58.7
V_Unb(%)	0.7	0.3	▼ 57.1	0.7	0.2	▼ 71.4
I_Unb(%)	10.4	6.3	▼ 39.4	6	2.9	▼ 51.7
PF(%)	86.4	89.2	△ 3.2	73.3	81.2	△ 10.8

• Performance

Government Agency / Public Institution

Government Complex Sejong

Institute of Justice

Judicial Research and Training Institute

Korean National Police

University

Korea Gas

Corporation

Suwon District Court

Suwon High Prosecutor's Office

Sejong Government Complex Multipurpose Facility

Korea Water Resources Corporation

Comprehensive Medical Complex

Korea Rural Community Corporation

National Health Insurance Service

Korea Coal Corporation

Pangyo Techno Valley Global R&D Center

Korea National Oil Corporation

Jincheon National

Training Center

Seoul Main Customs Office

Pangyo Creative Economy Valley

NTS Seodaemun District Office

Development

Agency for Defense

Suwon District Court Integrated Building

Gyeongsangbuk-do Provincial Government

Suwon Convention Center

Korea Electric Power Corporation

Gyeonggi-do Provincial Government

Sejong Center for the Performing Arts

KRC Gyeonggi Regional

Office

Jecheon Art Center

14

Aajor Company

Doosan Enerbility

Ssangyong C&E

Ssangyong C&B

Nongshim

SHINHAN BANK

Jeonju Paper

KT&G Sintanjin Factory

We have successfully delivered our products to more than 700 critical facilities, including airports, government agencies, large corporations, and power plants etc.

Airport / Power Plant / LH Corporation

Airport International Terminal Gimpo

Airport Cargo Terminal Gimpo

Airport Ulsan

Airport Gimhae

Airport Cheongju

Thermal Power Plant Dangjin

LH Headquarters Jinju

Thermal Power Plant Honam

LH Innovation City Chungbuk

Thermal Power Plant

Donghae

LH New Town Uijeongbu

Combined Power Plant Ulsan

LH New Town Namyangju

Thermal Power Plant Samcheonpo

LH New Town Gwanggyo

15

EARTHQUAKE-PROOF TRANSFORMER

0.8g class seismic transformer

• SEISMIC Cast-resin Transformer

As a transformer with **the industry's best seismic performance that can withstand an earthquake** of magnitude 8.6, it is a product whose technological excellence has been verified, such as **Korea Government Excellent Product, innovative products, and performance certifications**

SEISMIC Oil-immersed Transformer

 Purpose
 Distribution transformer

 Type
 Cast-resin / Oil-immersed

 Efficiency
 Standard consumption efficiency (high efficiency)

 Insulation
 Cast-resin (Type B or F), Oil-immersed (Type A)

Patent & Certification

• Technology & Expected Effects

01. More than 0.8g of seismic performance by applying rotary friction damper (patent 10 - 2286047)

By applying friction damper technology, it has the industry-leading level of seismic resistance of over 0.8g, and has improved seismic performance by **60%** compared to existing transformers.

02. Seismic displacement-controlled within 50mm by applying a support frame

The support frame technology reduces seismic displacement in the Y-direction by up to **90%** compared to conventional transformers.

03. 20% reduction in LCC cost by minimizing installation time & space

Economical with a **20%** reduction in Life Cycle Cost (LCC) achieved through decreased manufacturing costs, installation time, and space compared to competitors' products.

Rotary friction damper and rotational moment (Mp) optimization design

- \cdot Structural design optimized for transformer structure and load (0.5 ~ 20 tons)
- Design drawing considering the dynamic characteristics (natural period, response acceleration, response displacement) and behavior characteristics of the transformer
- Optimizing two types of friction dampers for commercialization, considering construction convenience, space/ time minimization, and economic feasibility.

Competitor Comparison

• Compared to competitors recognized as 'Korea Government Excellent Products' as of May 2023, our seismic transformers demonstrate excellence in the following areas:

01. Product Image

02. Core Technology & Features

0.5g 0.55g 0.88g * Based on the standards of each company's certified test report and 'Korea Government Excellent Product' specifications.

• KOLAS Certified Test Report

Test standard : ICC ES AC 156 standard

- **Test samples :** 3 types of seismic restraint transformers (750 kVA, 1,500kVA, 3,000 kVA)
- **Testing agency :** SGS Korea, Earthquake Disaster Prevention Research Center

01. 750 kVA certified test report (SGS Korea)

- 02. 1,500 kVA certified test report (Earthquake Disaster Prevention Research Center)
- 02. 3,000 kVA certified test report (Earthquake Disaster Prevention Research Center)

Evaluation items	Unit	750 kVA	1,500 kVA	3,000 kVA	Criteria	Test result
Seismic performance	g	0.80	0.80	0.88	0.55 or more	pass
Maximum displacement	mm	32.7	25.0	19.0	75 or below	pass
Amplification coefficient	â _p	Satisfaction	Satisfaction	Satisfaction	1.0 ≤ a₅≤ 2.5	pass

• Necessity & Thesis Presentation

\nearrow Earthquake frequency and strong earthquake trend in Korea

A transformer is a critical power supply; earthquake-induced damage can result in significant secondary issues, such as power outages and fires. Hence, it's considered an **essential component of building electrical installations requiring seismic design.**

• Thesis Presentation & Technology Seminar

Academic & thesis presentations

Academic presentations (6)

SCI journals (3)

2019 Spring Architectural Institute of Korea

2019 Spring Korean Concrete Institute

2021 Fall Earthquake Engineering Society of Korea

2022 Spring Korea institute for Structural Maintenance and Inspection

2022 Fall Korean Institute of Electrical Engineers (KIEE)

Korea Society of Seismic Isolation and Vibration Control

Dinh, N. H., Lee, S. J., Kim, J. Y., & Choi, K.-K. (2020). Study on seismic performance of a mold transformer through shaking table tests. Applied Sciences, 10(1), 361.

Dinh, N. H., Kim, J. Y., Lee, S. J., & Choi, K.-K. (2019). Seismic vulnerability assessment of hybrid mold transformer based on dynamic analyses. Applied Sciences, 9(15), 3180.

Lee, S. J., Park, W. I., Lee, J. E., Dinh, N. H., &Choi, K.-K. (2022, September). Hysteresis response of rotary friction dampers developed for seismic operational performance of non-structural components vulnerable to overturning. In Structures (Vol. 43, pp. 1447-1462). Elsevier.

• Seismic Site Classification by Seismic Magnitude Scales

- · The frequency and intensity of major earthquakes are rising worldwide.
- \cdot Existing products have been verified up to 0.55g, but this is based on the minimum design acceleration of the ground floor.
- Per the Earthquake Engineering Society's research and design guidelines, **high-rise buildings often experience seismic forces exceeding 0.66g due to amplification.** Therefore, transformers installed on middle and upper floors must meet a seismic performance requirement of over 0.8g.

* Source: Seismic Design Practical Guidelines for Transmission and Substation Equipment / Korea Electric Power Corporation (KEPCO), 2004

JMA (Japan Met Agenc	teorological y)	MM (USA)	Eartho zoi (buile stand	quake he ding ards)	Ground acceleration (g)	ICC ES AC 156 (m/s^2)	sei	Richter smometer scale M)	note	
situation	designation		KR	USA						
Record only on seismometer	0 (insensitive)	I			0.0008	0.00784		1		
Only felt by standing or sensitive people	l (weak)				0.001	0.0098				
Windows and		111	0	0	0.0025	0.0245		3		
lights shake	(minor)	IV			0.008	0.0784				
The house shakes and the water in the bowl spills	lll (mild)				0.01	0.098		4		
The house shakes violently and the water in the bowl spills	IV (medium)	VI	1	1	0.03	0.294			✓Yeongwol Earthquake	M:45 ('96.12)
The wall		VII	2	2A	0.05 0.08 0.1	0.49 <u>0.784</u> 0.98		5	 Hongseong Earthquake Songnisan Mountain Uljin Earthquake 	M:5 ('78.10) M:5.2 ('78.9) M:5.2 ('04.5)
tombstone is toppled over	(strong)	VIII		2B	0.12 0.14	1.176 1.372		6	Oomestic hydro and thermal power 0.12g	
About 30% of houses were damaged, the ground cracked and landslides	VI (violent)	IX		3	0.25	2.45		7	 Domestic nuclear power plant 0.2g San Francisco 	M:7.0 ('89.10)
30% or more		×	doesn't exist		0.40	3.92			 Gobae Earthquake Taiwan Earthquake India Earthquake Türkiye Earthquake 	M:7.6 ('99.9) M:7.6 ('99.9) M:7.7 ('01.1) M:7.8 ('99.8)
damaged, the ground cracked and landslides	VII (very violent)	XI		4	0.80	7.84		8	Indonesia EarthquakeKanto Earthquake	M:7.9 ('00.6) M:8.3 ('23)
		XII						9	Indonesia Earthquake	M:8.9 ('04.12)

HARMONIC FILTER

Ministry of Trade, Industry and Energy (MOTIE) ^r2021 R&D Rediscovery Project, performance

	<image/> <image/>	$\label{eq:second} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $
Korean Patent	P	CT

application

It is a new product significantly improves economic feasibility and efficiency compared to competitors. It reduces maintenance costs and predicts lifespan through a DC-Link capacitor fault diagnosis algorithm. Туре Capacity

HAPF-S, HAPF-M 50A ~ 400A Efficiency 95.0% more

START **P**nertech Π.

Ļ

Expected Effects

22

Main Features

As a real-time device for detecting and mitigating harmonic currents generated by nonlinear loads, it saves energy and prevents electrical accidents through expected effects such as reducing harmonics, improving unbalance, and reducing reactive power.

02. Safety improvement with built-in **Protection Circuit**

· Short circuit, over voltage, overcurrent, phase sequence failure and current reverse sequence protection

- Application of DC Link capacitor fault diagnosis algorithm
- · No resonance with the system
- Auto stop and reset button

04. Intelligent FFT

- · Unique intelligent FFT algorithm
- · System impedance automatic calculation ▶ resonance prevented
- · Maintaining high system reliability

01. Superior performance and efficiency

- Total Harmonic Distortion (THD) and order-specific harmonic compensation (selectable from 2nd to 50th odd orders)
- Displacement Power Factor (DPF) correction and Power Factor (PF) correction
- Real-time mitigation of harmonic currents through IGBT

03. Modular design considering expandability

- Modular structure with improved system reliability through slim design
- Implement space optimization with rack-mounted type and wallmounted type
- System configuration optimized for 3-phase power

05. Graphical user interface

- · 7 inch central HMI
- · Displays voltage, current, frequency, before and after THDi, apparent/active/reactive power, etc.
- · User-centered interface configuration

Technical Specifications

Module Rating	50 A	100 A		
Cooling method	air co	oling		
Environmental	-20 ~	55°C		
Scalability	Up to 4 units can be	connected in parallel		
СТ	50:5 ~ 10	0000:5		
Power consumption	≤ 2.5% of rat	ed capacity		
Efficiency	95% or above			
Air volume	≥ 200 m³/h	≥ 500 m³/h		
Grid frequency	60 Hz	± 5%		
Grid voltage	400 V	± 15%		
Connection method	3 phase ·	+ N + PE		
Display	7 inch touch	screen HMI		
Communication protocol	RS485, Modbus communication			
Protection level	IP 20			
Dimension (W×D×H)	560 × 550×190 mm	500×559×210 mm		
Weight	30kg	50kg		

• How To Install

CT is installed at load side when a single unit is in operation

CT is installed at power side when devices are running in parallel

• Certified Test Report

Harmonic filter performance test and electromagnetic wave test (Korea Electrotechnology Research Institute)

• Operating Principle

01. Harmonic generation

02. Harmonic filter installation 03. Installation effect

- · Harmonic mitigation, power factor correction
- · Maximize efficiency, accident
- prevention, improve lifespan • Reduce power loss, save energy

Thesis Presentation

ţ

ENERGY STORAGE System

Is serves as an efficient energy storage device, effectively reducing peak power demands and lowering electrical costs. It efficiently stores surplus energy and releases it as needed, optimizing power usage efficiency \cdot Installation Objective : Peak power reduction,

renewable energy connection, frequency adjustment, replacement of emergency power generation

• Installation Regulations

Content	Scope of Application	
Mandatory Installation	Regulations on Rationalization of Public Institutions' Energy Use, Article 11, Paragraph ⑤	
Scope of Application	Regulations on Promotion of High Efficiency Energy Appliances,	
Electrical Facility Regulations	 Article 67 of the Electricity Business Act and Article 43 of the Enforcement Decree of the same Act Korea Electrical Equipment Regulations in accordance with Article 4 of Electrical Equipment Technical Standards (Ministry of Commerce, Industry and Energy Notice No. 2023-364) 	
Fire Protection Regulations	^r Fire Safety Performance Criteria for Electricity Storage Facilities (NFPC 607)	
Inspection and checkup before use	KESC ^r Announcement on Electrical Equipment Inspection and Inspection Methods and Procedures _a	

Г

o Installation Requirements

:: Installed in a dedicated building (outdoor)

01. Separation distance when installed in a dedicated building (outdoor)

02. Separation distance when installed in a dedicated building (outdoor) container

* Container size: area 29,725 m2 or less (KS T ISO 668 applied)

Installation Requirements

i - Indoor installation in buildings other than dedicated buildings

01. Separation distance between columns

• Installed as a fireproof structure in accordance with the ^rRules on Standards for Evacuation and Fireproof Structures of Buildings_

• The capacity of each rack is less than 50 kWh, and the total capacity of secondary batteries in the building is less than 600 kWh.

• Space between secondary battery racks and between racks and walls at least 1m apart from each other.

 The secondary battery room should be installed at least 1.5 m away from other facilities in the building (power supply facilities, combustible materials, etc.) and at least 3 m away from similar places such as entrances to rooms or evacuation stairs.

* Source: KESC announcement

(detailed inspection and inspection standards for electrical equipment)

02. Separation distance when installed indoors

• Specifications by Capacity

PCS Capacity	Battery Car	pacity (kWh)	Scalability	Note
(kW)	Indoor Type	Outdoor Type	(4Hours)	Note
50	100	100	200 kWh	
75	150	150	300 kWh	
101	200	200	400 kWh	
125	250	250	500 kWh	
150	300	300	600 kWh	Korea Government
200	400	400	800 kWh	(~2025.06)
250	500	500	1000 kWh	
300	560	600	1200 kWh	
400	560	800	1600 kWh	
500	1000	1000	2000 kWh	

* Non-standard sizes are manufactured according to customer orders.

° Installation Example

∷]→ Outdoor Type

- 01. KIASC PCS 75 kW, Battery 160 kWh
- 02. Seoul Southern District Prosecutors' Office PCS 150 kW, Battery 320 kWh
- 03. Gyeonggi Provincial Institute of Health and Environment PCS 100 kW, Battery 200 kWh

∷ ← Indoor Type

- 01. National Agricultural Museum Agricultural History and Culture Exhibition Hall Proposal PCS 150 kW, Battery 320 kWh
- 02. Ulsan City Art Museum PCS 100 kW, Battery 200 kWh

HARMONICS ANALYSIS & COUNTERMEASURES

In order to prevent damage to electrical equipment due to harmonics, reduce loss, and improve efficiency, we present optimized solutions through precise diagnosis and analysis of equipment to help customers reduce maintenance costs and efficiently manage assets.

Necessity

Harmonics are the main culprit of deteriorating electrical quality and cause damage in various forms, such as increased power loss, reduced efficiency, shortened lifespan, and malfunctions.

Maintenance Costs

Power Loss

Facility Efficiency Facility Lifespan

Impact on power system and electrical facilities

Transformer	Wires and conductors	Rotating machine	Capacitor for power	Overcurrent	Circuit breaker · Other
· Power quality technology	· Overheating	· Overheating	 Overheating 	· Abrupt stop	 Ampacity reduction
· Overheating	· Corona outbreak	· Decrease in efficiency	· Over-resonance	· Inaccurate measurement	 Noise, Vibration
increased noise	· Neutral over current	· Shortened device lifespan	· Overcurrent	· Non-integer harmonic	· Acceleration of life deterioration
· Capacity reduction	 Capacity reduction 	· Tog uneven	 Overvoltage insulation 	generation	· Drop in power factor
 Insulation breakdown 	 Insulation breakdown 	 Vibrational torque 	explosion	 Malfunction 	 Decreased fuse capacity
	· Skin Effect			· Frequent part failure	· Signal, communication failure

Diagnosis & Consulting

* Measurable according to international standards

Category	Basic Type	Precision Type	
Duration	5-7 Days	25-30 Days	
Diagnostic Items	 Harmonic precision diagnosis Insulation deterioration and temperature distribution Power quality analyze 	 Harmonic precision diagnosis Insulation deterioration and temperature distribution Power quality analyze 	
Utilized Equipment	Harmonic Analysis Equipment, Infrared Thermal Imaging Diagnostic Equipment	Harmonic Analysis Equipment, Infrared Thermal Imaging Diagnostic Equipment, Power quality analyzer, insulation resistance meter, hook meter, noise meter	
Diagnostic Cost	Different depending on location, number of people, equipment, and schedule	Different depending on location, number of people, equipment, and schedule	

• Procedure

• Diagnosis Case

ିଲ୍ଲ- **OO COURT**

- Objective : Devise harmonic reduction and energy saving measures
- Results : THD 37.47% reduction and power loss 4.77% reduction

Diagnosis Site

Patent Certificate

We have secured original technology with **24 patent registrations** (22 domestic, 2 overseas) and **6 trademark registrations (2 domestic, 4 overseas) for major products.**

- 01. Harmonic reduction device
- 02. Hybrid type harmonic reduction device
- 03. Harmonic attenuation transformer
- **04.** Reception and distribution panel equipped with hybrid transformer and black box
- **05.** Transformability and harmonics and current unbalance
- **06.** Power quality improvement device and power supply system
- **07.** Low loss hybrid transformer and its manufacturing method
- **08.** IoT-based transformer monitoring system and method
- **09.** Seismic transformer
- Battery rack-based power management device and energy storage system including the same, charging and discharging the battery racks based on their respective states
- A power management device capable of compensating for unbalance between battery racks and an energy storage system including the same
- 12. Transformer tie plate for reducing stray load loss and manufacturing method thereof
- 13. Hybrid seismic isolator and seismic transformer
- 14. Rail type hybrid seismic isolator
- 15. Displacement control seismic transformer with friction damper applied
- 16. Power converter for fuel cell and its control method
- 17. Low loss hybrid transformer and its manufacturing method
- 18. U.S. Patent
- 19. Chinese Patent
- :

• Technology Certificate

Its excellence is recognized through various technology certifications such as **Korea Government Excellent Product, ISO, CE etc.**

- 01. Korea Government Excellent Product
- 02. Korean Innovative Product
- 03. LH New Technology(Product) Confirmation
- 04. Green technology certification
- 05. New Excellent Technology (NET)
- 06. Excellent Performance Certification
- **07.** Excellent invention priority purchase recommendation confirmation
- **08.** Excellent invention priority purchase recommendation confirmation
- 09. ISO 9001
- **10.** ISO 14001
- 11. CE certification
- 12. Certificate of registration of selected products developed by 5 power generation companies under KEPCO
- 13. Certificate of Materials/Machinery for management of Efficiency

• Overseas Delivery Performance

Natura Brazil

JW MARRIOTT HOTEL India

University of Kawajulu-Natal South Africa

Nestle Brazil

RENAISSANCE HOTEL

India

GRAND HYATT HOTEL

UAE

Pepsi Brazil

SUNSTAR OVERSEAS India

Enertech Global United states

JOY CITY China

THE RESORT HOTEL India

GOSHI-THANG LONG Vietnam

FOUR POINT HOTEL India

Taiace engneering sdn bhd Malaysia

SONHA Vietnam

• Press Release

